资源类型

期刊论文 284

会议视频 3

年份

2024 1

2023 16

2022 25

2021 26

2020 13

2019 23

2018 19

2017 14

2016 12

2015 14

2014 13

2013 13

2012 6

2011 12

2010 15

2009 11

2008 21

2007 17

2006 3

2005 3

展开 ︾

关键词

数值模拟 3

个人热管理 2

卫星 2

温度 2

热分析 2

FE-SEA混合法 1

Fluent 1

IHNI-1反应堆;热工水力;子通道;安全分析 1

Inconel 718合金 1

PV/T 1

Rosenthal方程 1

SAHP 1

ZN-1阻尼橡胶材料 1

《联合国气候变化框架公约》(UNFCCC) 1

不可还原性 1

严重事故 1

临界热流密度 1

临界风速 1

主动控温回路 1

展开 ︾

检索范围:

排序: 展示方式:

The development of ultralightweight expanded perlite-based thermal insulation panel using alkali activator

Damla Nur ÇELİK; Gökhan DURMUŞ

《结构与土木工程前沿(英文)》 2022年 第16卷 第11期   页码 1486-1499 doi: 10.1007/s11709-022-0881-6

摘要: The International Energy Agency (IEA) states that global energy consumption will increase by 53% by 2030. Turkey has 70% of the world’s perlite reserves, and in order to reduce energy consumption a thermal insulation panel was developed in Turkey using different particle sizes of expanded perlite (EP). In this study, 0–1.18 mm (powder) and 0–3 mm (granular) EP particle sizes were selected, since they have the lowest thermal conductivity coefficients among all the particle sizes. In addition, an alkali activator solution was used as a binder in the mixtures. The alkaline activator solution was obtained by mixing sodium hydroxide solution (6, 8, 10, and 12 mol·L−1) and sodium silicate (Module 3) at the different ratios of Na2SiO3 to NaOH of 1, 1.5, 2, and 2.5. This study aimed to experimentally determine the optimum binder and distribution ratio of EP, with the lowest coefficient of thermal conductivity and the lowest density. The lowest thermal conductivity and the lowest density were determined as 0.04919 W·m−1·K−1 and 133.267 kg/m3, respectively, in the sample prepared with 83.33% powder-size EP, 6 mol·L−1 sodium hydroxide solution, and ratio of Na2SiO3 to NaOH of 1.5. The density, thermal conductivity, and compressive strength of the sample showed the same trends of behavior when the Na2SiO3 to NaOH ratio was increased. In addition, the highest compressive strength was measured in 12 mol·L−1 NaOH concentration regardless of particle size. In conclusion, the study predicts that the EP-based thermal insulation panel can be used as an insulation material in the construction industry according to the TS825 Thermal Insulation Standard.

关键词: expanded perlite     alkali activator     thermal insulation panel     thermal conductivity    

strategy for the construction of silk fibroin–SiO composite aerogel with enhanced mechanical property and thermalinsulation performance

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 288-297 doi: 10.1007/s11705-022-2222-7

摘要: The practical application of silica aerogels is an enormous challenge due to the difficulties in improving both mechanical property and thermal insulation performance. In this work, silk fibroin was used as scaffold to improve the mechanical property and thermal insulation performance of silica aerogels. The ungelled SiO2 precursor solution was impregnated into silk fibroin to prepare silk fibroin–SiO2 composite aerogels via sol−gel method followed by freeze-drying. By virtue of the interfacial hydrogen-bonding interactions and chemical reactions between silk fibroin and silica nanoparticles, SiO2 was well-dispersed in the silk fibroin aerogel and composite aerogels exhibited enhanced mechanical property. By increasing the loading of silk fibroin from 15 wt % to 21 wt %, the maximum compressive stress was enhanced from 0.266 to 0.508 MPa when the strain reached 50%. The thermal insulation performance of the composite aerogels was improved compared with pure silica aerogel, as evidenced that the thermal conductivity was decreased from 0.0668 to 0.0341 W∙m‒1∙K‒1. Moreover, the composite aerogels exhibited better hydrophobicity and fire retardancy compared to pure silica aerogel. Our work provides a novel approach to preparing silk fibroin–SiO2 composite aerogels with enhanced mechanical property and thermal insulation performance, which has potential application as thermal insulation material.

关键词: silica aerogel     silk fibroin     impregnation     thermal insulation     mechanical property    

A concept of capillary active, dynamic insulation integrated with heating, cooling and ventilation, air

Mark BOMBERG

《结构与土木工程前沿(英文)》 2010年 第4卷 第4期   页码 431-437 doi: 10.1007/s11709-010-0071-9

摘要: When a historic fa?ade needs to be preserved or when the seismic considerations favor use of a concrete wall system and fire considerations limit exterior thermal insulation, one needs to use interior thermal insulation systems. Interior thermal insulation systems are less effective than the exterior systems and will not reduce the effect of thermal bridges. Yet they may be successfully used and, in many instances, are recommended as a complement to the exterior insulation. This paper presents one of these cases. It is focused on the most successful applications of capillary active, dynamic interior thermal insulation. This happens when such insulation is integrated with heating, cooling and ventilation, air conditioning (HVAC) system. Starting with a pioneering work of the Technical University in Dresden in development of capillary active interior insulations, we propose a next generation, namely, a bio-fiber thermal insulation. When completing the review, this paper proposes a concept of a joint research project to be undertaken by partners from the US (where improvement of indoor climate in exposed coastal areas is needed), China (indoor climate in non-air conditioned concrete buildings is an issue), and Germany (where the bio-fiber technology has been developed).

关键词: capillary active insulation     integrated heating     cooling and ventilation     air conditioning (HVAC) and building enclosure     dynamic insulation     switchable thermal resistance     variable U-value walls    

Preparation, with graphene, of novel biomimetic self-healing microcapsules with high thermal stability

《结构与土木工程前沿(英文)》   页码 1188-1198 doi: 10.1007/s11709-023-0027-5

摘要: This paper reports a comparative study of microcapsules with enhanced thermal stability and electrical conductivity inspired by the bionic thermal insulation of birds’ feathers for self-healing aged asphalt. The work is based on an in situ polymerization with composite shell components of graphene and hexamethoxymethylmelamine resin. By using graphene, microcapsules with rough surfaces are achieved, improving the interface between microcapsules and asphalt. In addition, the microcapsules’ initial thermal decomposition temperature is appropriately high, so that the stability of the microcapsule in the asphalt highway system is protected. The proportion of graphene in the microcapsule shell can regulate the microcapsule’s heat resistance because graphene modifies the shell’s structural makeup. Additionally, the microcapsules’ electrical conductivity is relatively high. The self-healing capability of bitumen sharply increases, providing benefit to the effect of microcapsules on the properties of aged asphalt.

关键词: graphene     microcapsule     bitumen     heat insulation     conductivity    

Structural performance of a façade precast concrete sandwich panel enabled by a bar-type basalt fiber-reinforced

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 122-137 doi: 10.1007/s11709-022-0894-1

摘要: In this study, a novel diagonally inserted bar-type basalt fiber reinforced polymer (BFRP) connector was proposed, aiming to achieve both construction convenience and partially composite behavior in precast concrete sandwich panels (PCSPs). First, pull-out tests were conducted to evaluate the anchoring performance of the connector in concrete after exposure to different temperatures. Thereafter, direct shear tests were conducted to investigate the shear performance of the connector. After the test on the individual performance of the connector, five façade PCSP specimens with the bar-type BFRP connector were fabricated, and the out-of-plane flexural performance was tested under a uniformly distributed load. The investigating parameters included the panel length, opening condition, and boundary condition. The results obtained in this study primarily indicated that 1) the bar-type BFRP connector can achieve a reliable anchorage system in concrete; 2) the bar-type BFRP connector can offer sufficient stiffness and capacity to achieve a partially composite PCSP; 3) the boundary condition of the panel considerably influenced the out-of-plane flexural performance and composite action of the investigated façade PCSP.

关键词: precast concrete sandwich panel     basalt fiber reinforced polymer     pull-out performance     shear performance     out-of-plane flexural performance    

Influence of envelope insulation materials on building energy consumption

Junlan YANG, Jiabao TANG

《能源前沿(英文)》 2017年 第11卷 第4期   页码 575-581 doi: 10.1007/s11708-017-0473-7

摘要: In this paper, the influence of different external wall insulation materials on the energy consumption of a newly built apartment in Germany is investigated. Three types of insulation materials commonly used in Germany including mineral fiber, polyurethane, and vacuum insulation panel are chosen for the case studies. An energy analysis model is established to clarify the primary energy use for production of the insulation materials and for building space heating. The calculation results show that the energy consumption for insulation material production increases with the insulation thickness, whereas the energy use for space heating decreases with the insulation thickness. Thus, there exists an optimum thickness to get the lowest total energy consumption for each kind of insulation material. The ascending order of the total energy consumption of the three materials is mineral fiber, polyurethane, and vacuum insulation panel. However, the optimum insulation thicknesses for the three insulation materials show a verse order at a certain heat transfer coefficient of the base envelope. The energy payback time (EPT) is proposed to calculate the payback time of the primary energy use for insulation material production. Mineral fiber has the shortest time, followed by polyurethane and vacuum insulation panel. The EPTS is 10, 19 and 21 years, respectively when the heat transfer coefficient of the base envelope is 0.2 W/(m ·K). In addition, the simulated results show that the theoretical value and the simulated value are basically identical.

关键词: building envelope     insulation materials     energy consumption     payback time    

Operating characteristic analysis on the ultra-thin low temperature floor-heating system

Hualing ZHANG, Xiaopeng SONG

《结构与土木工程前沿(英文)》 2013年 第7卷 第2期   页码 127-132 doi: 10.1007/s11709-013-0200-3

摘要: Prefabricated ultra-thin radiant heating panel, as a new heating terminal type, is becoming a highlight in Yangtze River Valley area, China recently. However, there is a lack of operating characteristic research in this region, especially the energy consumption and operating mode are even less. To obtain these data, a heating system was set up in a duplex house in Chongqing. The test results show that the floor heating system could almost satisfy thermal comfort requirement at supply water temperature 45°C. But the preheating time was up to 4.5 h which was 1 h longer than that at supply water temperature 50°C. Meanwhile, the energy consumption at supply water temperature 50°C increased 0.10 Nm /h, and the operating efficiency decrease about 2.6% compared to those at water temperature 45°C. Considering both the thermal lag and operating efficiency, a reasonable suggestion was proposed in this paper. That was, the standard families which just stay home at night should adopt the interim mode of partial room with part time. And the supply water temperature should be properly raised during the preheating period and lowered down in the steady heating stage.

关键词: ultra-thin floor heating panel     the preheating time     thermal comfort     energy saving    

Performance improvement of a pulse tube cryocooler with a single compressor through cascade utilization of cold energy

Xuming LIU, Xiafan XU, Biao YANG, Xiaotong XI, Liubiao CHEN, Junjie WANG, Yuan ZHOU

《能源前沿(英文)》 2021年 第15卷 第2期   页码 345-357 doi: 10.1007/s11708-020-0708-x

摘要: The high-frequency pulse tube cryocooler (HPTC) has been attracting increasing and widespread attention in the field of cryogenic technology because of its compact structure, low vibration, and reliable operation. The gas-coupled HPTC, driven by a single compressor, is currently the simplest and most compact structure. For HPTCs operating below 20 K, in order to obtain the mW cooling capacity, hundreds or even thousands of watts of electrical power are consumed, where radiation heat leakage accounts for a large proportion of their cooling capacity. In this paper, based on SAGE10, a HPTC heat radiation calculation model was first established to study the effects of radiation heat leakage on apparent performance parameters (such as temperature and cooling capacity), and internal parameters (such as enthalpy flow and gas distribution) of the gas-coupled HPTC. An active thermal insulation method of cascade utilization of the cold energy of the system was proposed for the gas-coupled HPTC. Numerical simulations indicate that the reduction of external radiation heat leakage cannot only directly increase the net cooling power, but also decrease the internal gross losses and increase the mass and acoustic power in the lower-temperature section, which further enhances the refrigeration performance. The numerical calculation results were verified by experiments, and the test results showed that the no-load temperature of the developed cryocooler prototype decreased from 15.1 K to 6.4 K, and the relative Carnot efficiency at 15.5 K increased from 0.029% to 0.996% when substituting the proposed active method for the traditional passive method with multi-layer thermal insulation materials.

关键词: radiation heat leakage     active thermal insulation     cascade utilization     cold energy     performance improvement     cryocooler    

Effectiveness of state incentives for promoting wind energy: A panel data examination

Deepak SANGROYA,Jogendra NAYAK

《能源前沿(英文)》 2015年 第9卷 第3期   页码 247-258 doi: 10.1007/s11708-015-0364-8

摘要: Over the last decade, India has started to concentrate earnestly on renewable energy. The Indian government, as well as different state governments, are adopting policy instruments such as feed in tariff, captive consumption, renewable purchase obligation and generation based incentive etc. aimed at renewable energy development. This paper evaluates the effectiveness of state level incentives for the development of wind energy in India. Fixed effect panel data modelling technique of econometric analysis is used to analyse the data of 26 Indian states in 11 years. The results show that feed in tariff and captive consumption are the significant predictors of wind energy development. However, renewable purchase obligation does not affect wind energy significantly.

关键词: India     wind energy development     state incentives     econometric analysis     panel data    

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 396-410 doi: 10.1007/s11709-023-0934-5

摘要: In this study, a new system consisting of a combination of braces and steel infill panels called the braced corrugated steel shear panel (BCSSP) is presented. To obtain the hysteretic behavior of the proposed system, the quasi-static cyclic performances of two experimental specimens were first evaluated. The finite element modeling method was then verified based on the obtained experimental results. Additional numerical evaluations were carried out to investigate the effects of different parameters on the system. Subsequently, a relationship was established to estimate the buckling shear strength of the system without considering residual stresses. The results obtained from the parametric study indicate that the corrugated steel shear panel (CSSP) with the specifications of a = 30 mm, t = 2 mm, and θ = 90° had the highest energy dissipation capacity and ultimate strength while the CSSP with the specifications of a = 30 mm, t = 2 mm, and θ = 30° had the highest initial stiffness. It can thus be concluded that the latter CSSP has the best structural performance and that increasing the number of corrugations, corrugation angle, and plate thickness and decreasing the sub-panel width generally enhance the performance of CSSPs in terms of the stability of their hysteretic behaviors.

关键词: trapezoidal corrugated plate     steel shear panel     braced steel shear panel     experimental study     buckling resistance.    

农作物秸秆人造板的研究

周定国

《中国工程科学》 2009年 第11卷 第10期   页码 115-121

摘要:

发展农作物秸秆人造板产业对于保护森林资源和人类环境,解决我国木材原料供应不足的矛盾具有重要的现实意义。近年来,科技人员在农作物秸秆人造板基础研究、产品开发和工业化应用方面做了大量的研究工作。文章介绍了笔者及所在团队在秸秆原料特性和秸秆板制造工艺方面的最新研究成果。

关键词: 农作物秸秆     人造板     研究前景    

Determining the optimum economic insulation thickness of double pipes buried in the soil for district

Fating LI, Pengfei JIE, Zhou FANG, Zhimei WEN

《能源前沿(英文)》 2021年 第15卷 第1期   页码 170-185 doi: 10.1007/s11708-020-0680-5

摘要: The insulation thickness (IT) of double pipes buried in the soil (DPBIS) for district heating (DH) systems was optimized to minimize the annual total cost of DPBIS for DH systems. An optimization model to obtain the optimum insulation thickness (OIT) and minimum annual total cost (MATC) of DPBIS for DH systems was established. The zero point theorem and fsolve function were used to solve the optimization model. Three types of heat sources, four operating strategies, three kinds of insulation materials, three buried depth (BD) values, and seven nominal pipe size (NPS) values were considered in the calculation of the OIT and MATC of DPBIS for DH systems, respectively. The optimization results for the above factors were compared. The results show that the OIT and MATC of DPBIS for DH systems can be obtained by using the optimization model. Sensitivity analysis was conducted to investigate the impact of some economic parameters, i.e., unit heating cost, insulation material price, interest rate, and insulation material lifetime, on optimization results. It is found out that the impact of sensitivity factors on the OIT and MATC of DPBIS for DH systems is different.

关键词: double pipes     optimization model     optimum insulation thickness     minimum annual total cost    

全气候新能源汽车关键技术及展望

王文伟,孙逢春

《中国工程科学》 2019年 第21卷 第3期   页码 47-55 doi: 10.15302/J-SSCAE-2019.03.020

摘要:

全气候新能源汽车是指能够适应包括高温、高湿和极寒等各种气候环境的新能源汽车,相对于目前高温高湿环境下较为成熟的隔热散热与防护技术,新能源汽车在超过–30 ℃的极寒环境下存在无法启动、续驶里程锐减、充电困难等问题,是国际社会公认的制约新能源汽车全气候应用的难题。本文分析研究了动力电池自加热技术、高效冷暖一体化热泵空调技术、新型整车隔热保温技术等全气候新能源汽车技术体系,并进行了整车集成开发及极寒环境试验,最后分析了全气候新能源汽车的技术发展趋势。本文所述的研究成果将通过在2022 年北京冬季奥林匹克运动会上率先进行示范应用,从而推动我国乃至国际新能源汽车的全气候应用。

关键词: 全气候新能源汽车     电池自加热     热泵空调     隔热保温    

Novel methods by using non-vacuum insulated tubing to extend the lifetime of the tubing

Chenglong ZHOU,Guojin ZHU,Yongxiang XU,Jifei YU,Xiaoliang ZHANG,Hongzhi SHENG

《能源前沿(英文)》 2015年 第9卷 第2期   页码 142-147 doi: 10.1007/s11708-015-0357-7

摘要: The analysis of the failure mechanics, namely hydrogen permeation of vacuum insulated tubing (VIT), indicated that the failure of VIT could be decreased but could not be avoided. To solve this problem, some measures by using non-vacuum materials were proposed and analyzed in this paper. The results show that to fill the tubing with foam-glass beads or high pressure argon may lead to a good performance.

关键词: vacuum insulated tubing     cyclic steam stimulation     insulation material     thermal conductivity     foam-glass     hydrogen permeation    

Lung function and air pollution exposure in adults with asthma in Beijing: a 2-year longitudinal panel

《医学前沿(英文)》 2022年 第16卷 第4期   页码 574-583 doi: 10.1007/s11684-021-0882-1

摘要: The effect of air pollution on the lung function of adults with asthma remains unclear to date. This study followed 112 patients with asthma at 3-month intervals for 2 years. The pollutant exposure of the participants was estimated using the inverse distance weight method. The participants were divided into three groups according to their lung function level at every visit. A linear mixed-effect model was applied to predict the change in lung function with each unit change in pollution concentration. Exposure to carbon monoxide (CO) and particles less than 2.5 micrometers in diameter (PM2.5) was negatively associated with large airway function in participants. In the severe group, exposure to chronic sulfur dioxide (SO2) was negatively associated with post-bronchodilator forced expiratory flow at 50%, between 25% and 75% of vital capacity % predicted (change of 95% CI per unit: −0.34 (−0.55, −0.12), −0.24 (−0.44, −0.03), respectively). In the mild group, the effect of SO2 on the small airways was similar to that in the severe group, and it was negatively associated with large airway function. Exposure to CO and PM2.5 was negatively associated with the large airway function of adults with asthma. The negative effects of SO2 were more evident and widely observed in adults with severe and mild asthma than in adults with moderate asthma. Patients with asthma react differently to air pollutants as evidenced by their lung function levels.

关键词: lung function     asthma     air pollution     adult    

标题 作者 时间 类型 操作

The development of ultralightweight expanded perlite-based thermal insulation panel using alkali activator

Damla Nur ÇELİK; Gökhan DURMUŞ

期刊论文

strategy for the construction of silk fibroin–SiO composite aerogel with enhanced mechanical property and thermalinsulation performance

期刊论文

A concept of capillary active, dynamic insulation integrated with heating, cooling and ventilation, air

Mark BOMBERG

期刊论文

Preparation, with graphene, of novel biomimetic self-healing microcapsules with high thermal stability

期刊论文

Structural performance of a façade precast concrete sandwich panel enabled by a bar-type basalt fiber-reinforced

期刊论文

Influence of envelope insulation materials on building energy consumption

Junlan YANG, Jiabao TANG

期刊论文

Operating characteristic analysis on the ultra-thin low temperature floor-heating system

Hualing ZHANG, Xiaopeng SONG

期刊论文

Performance improvement of a pulse tube cryocooler with a single compressor through cascade utilization of cold energy

Xuming LIU, Xiafan XU, Biao YANG, Xiaotong XI, Liubiao CHEN, Junjie WANG, Yuan ZHOU

期刊论文

Effectiveness of state incentives for promoting wind energy: A panel data examination

Deepak SANGROYA,Jogendra NAYAK

期刊论文

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

期刊论文

农作物秸秆人造板的研究

周定国

期刊论文

Determining the optimum economic insulation thickness of double pipes buried in the soil for district

Fating LI, Pengfei JIE, Zhou FANG, Zhimei WEN

期刊论文

全气候新能源汽车关键技术及展望

王文伟,孙逢春

期刊论文

Novel methods by using non-vacuum insulated tubing to extend the lifetime of the tubing

Chenglong ZHOU,Guojin ZHU,Yongxiang XU,Jifei YU,Xiaoliang ZHANG,Hongzhi SHENG

期刊论文

Lung function and air pollution exposure in adults with asthma in Beijing: a 2-year longitudinal panel

期刊论文